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Abstract

Approximate analytical solutions based on a variational approach are presented for stresses in two cross-ply lam-

inates, [90m/0n]s and [0m/90n]s, with matrix cracks in the 90� layers, subjected to bending. The analysis assumes a plane

stress state in longitudinal sections of the laminate and accounts for the lack of symmetry caused by partially closed

crack planes or by cracks present on one side of the laminate mid-plane. Comparisons with finite element analysis for

laminates of glass/epoxy and graphite/epoxy show that the stress components in the cracked layers in the regions of

interest are in good agreement with analytical results. The model is therefore suitable for predicting matrix crack

multiplication in addition to estimating the residual flexural stiffness. The results obtained show that the transverse

normal stress at the 0/90 interface is compressive for [0/90]s laminate, while this stress is tensile in regions of the interface

closer to the crack for the [90/0]s laminate. Thus the analysis suggests that delamination is possible under bending in the

[90/0]s laminate.

� 2003 Published by Elsevier Ltd.
1. Introduction

Composite laminates in structural applications are generally subjected to combinations of in-plane loads

as well as bending and torsional moments. However, most studies in the past have focused on the laminate

response under in-plane loads only, primarily under uniaxial loading parallel to a symmetry direction.

Experimental observations of damage in symmetric laminates under tension parallel to a symmetry (axial)

direction have shown that the damage occurs first in the form of transverse ply cracks, i.e. matrix cracks
that run parallel to the fiber direction in off-axis plies. Subsequently, delamination occurs, more commonly

under cyclic loading, in interfacial regions surrounding intersections of ply cracks in two neighboring plies.

These damage modes and the associated laminate response have been studied extensively and reported

widely in the literature (e.g., Reifsnider, 1977; Parvizi et al., 1978; Flaggs and Kural, 1982; Talreja, 1985a;

Hashin, 1985; Wang et al., 1985; Laws and Dvorak, 1988; Whitcomb, 1992; Nairn and Hu, 1994). Among
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the approaches taken to analyze and model damage are the approximate one-dimensional shear-lag

analysis (e.g., Highsmith and Reifsnider, 1982), variational and other solutions to local stresses (e.g.,

Hashin, 1985; Nairn, 1995; McCartney, 1996a,b) and continuum damage mechanics based approaches

(e.g., Talreja, 1985b; Allen et al., 1987; Maire and Chaboche, 1997). The reader is referred to a recent
publication for a detailed review of the developments in this area (Nairn, 2000).

The work to treat laminates undergoing damage in bending has begun only in recent years. Experimental

investigations in this area have been reported by Echaabi et al. (1996) and Adolfsson and Gudmundson

(1999). Smith and Ogin (1999) have obtained estimates of the reduced flexural modulus as a function of

crack density based on the shear-lag approach. Li et al. (1994) have developed a semi-numerical approach

to solve for the stresses in the cracked laminate under bending. Their approach is similar to the dis-

placement based finite element method with discretization only in the thickness direction. The field vari-

ables are approximated by Fourier series expansions in the in-plane directions, thus allowing the stresses
and effective properties for different crack spacings to be calculated by discretizing the domain only once.

Among more advanced analytical work on bending in laminates with transverse cracks is the method

developed by McCartney and Pierse (1997) that provides approximate solutions to the stress state. In his

approach the laminate is subdivided into several layers in the thickness direction and the 2-D elasticity

equations for each layer with appropriate interface and boundary conditions are considered. Solution to the

stress state is obtained by introducing approximating assumptions in the constitutive relations as well as

in the boundary conditions. The accuracy of the results can be improved by increasing the number of

layer subdivisions.
Another approach is that of Adolfsson and Gudmundson (1997) who developed a method to predict the

reduced thermoelastic properties. This approach derives the work done by transverse cracking in a laminate

by using the stress intensity factor for an array of parallel cracks in an infinite transversely isotropic

medium. Although simple and generally applicable to symmetric laminates, as well as to cracking in

multiple layers, there is uncertainty concerning the accuracy of this approach. The errors introduced by the

assumption of a homogeneous infinite medium would presumably depend on how different the axial ply

properties of the cracked ply are from those of the neighboring plies, as well as on the fact that the laminate

thickness is finite and often only a few times as large as the crack length.
The objective of the work presented here is to analyze stresses in cross-ply laminates in which transverse

ply cracks form under application of a bending moment. The cases considered are [90m/0n]s and [0m/90n]s
laminates with cracks in the 90� layers. In both cases a variational approach used earlier for axial loading of

cross-ply laminates (Hashin, 1985) is used. Kim and Nairn (2000) have used a similar approach to study the

crack formation in the coating in coating/substrate systems under bending loads. The stresses determined

by this approach are verified by a finite element analysis. Finally, based on these stresses an assessment is

made of further transverse cracking under increasing bending moment as well as of formation of delami-

nation.
2. Stress analysis

We assume that transverse cracks have been formed in a given cross-ply laminate under axial tension or

under monotonic or reversed bending. Following this, we investigate the stress state generated within the

laminate under application of a fixed bending moment. We assume that under this moment the cracks

remain open only on the tension side of the laminate mid-plane. Thus any cracks lying on the compression

side that were formed under axial tension or under reversed bending are assumed to close and transmit

compressive stresses across their planes. We note that the laminate symmetry about the mid-plane in the

undamaged state is lost in the damaged state under the applied bending moment. The following analysis
will account for this loss of symmetry.
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We assume that the stresses in the cracked laminate can be obtained by modifying the stress state of the

undamaged laminate with unknown perturbation functions. Approximations are introduced in these

functions to simplify the analysis. An admissible stress state for applying the principle of minimum com-

plementary potential energy is obtained from the assumed stress state by satisfying the 2-D equilibrium
equations and the boundary and interface conditions. Minimizing the complementary energy functional

with respect to the unknown functions gives the Euler–Lagrange equations to be solved along with

appropriate boundary conditions at the crack faces. Further analysis for the two cases of cross-ply lami-

nates follows.

2.1. Case I: [90m/0n]s

The laminate with matrix cracks for this case is shown in Fig. 1a. The cracks are considered to extend
over the width of the laminate and the crack spacing is assumed to be uniform. We consider the region

between two consecutive cracks with spacing equal to a, as shown in Fig. 1b. Plane stress condition in

the X–Z plane is assumed and thereby stresses in the Y -direction due to Poisson�s effect are ignored.

First we consider the undamaged laminate subjected to a constant bending moment M . Classical lami-

nation theory is used to obtain the stress state in the laminate and the strain e in the laminate is given by
e ¼ D�1MZ ð2:1Þ

where D is the flexural stiffness matrix of the laminate, M is the vector of moment resultants and Z is the

distance of the considered point from mid-plane. Thus
M ¼
M
0

0

8<:
9=; ð2:2Þ
Fig. 1. (a) [90m/0n]s laminate with matrix cracks in 90� layer on the tension side and (b) Unit cell for stress analysis.
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The stresses in the 90� and 0� layers are given by
r0ðaÞ ¼ QðaÞe ð2:3Þ
where QðaÞ is the reduced stiffness matrix for layer a which represents layer a, b, or c, as shown in Fig. 1b.

The superscript 0 is used to indicate the stress for the undamaged laminate, which can be written as
r0ðaÞ
xx ðZÞ ¼ S1Z ð2:4aÞ

r0ðbÞ
xx ðZÞ ¼ S2Z ð2:4bÞ

r0ðcÞ
xx ðZÞ ¼ S1Z ð2:4cÞ

r0ðaÞ
xz ðZÞ ¼ r0ðbÞ

xz ðZÞ ¼ r0ðcÞ
xz ðZÞ ¼ 0 ð2:4dÞ

r0ðaÞ
zz ðZÞ ¼ r0ðbÞ

zz ðZÞ ¼ r0ðcÞ
zz ðZÞ ¼ 0 ð2:4eÞ
where
S1 ¼
X3
j¼1

Qð90Þ
1j D�1

j1

" #
M ð2:5aÞ
and
S2 ¼
X3
j¼1

Qð0Þ
1j D

�1
j1

" #
M ð2:5bÞ
Here Qð0Þ and Qð90Þ are the reduced stiffness matrices of the 0� layer and the 90� layer, respectively. Inte-
grating the moment due to the stresses given by (2.4) across the thickness the total bending moment M is

obtained as
M ¼ 2
3
ðS2t3 þ S1H 3 � S1t3Þ ð2:6Þ
where H and t are the thickness values as shown in Fig. 1b.

Now we consider the laminate with matrix cracks. The presence of cracks alters the stress field. Let
rCðaÞ
xx ðX ; ZÞ be the total in-plane normal stress in layer a of the cracked laminate. Considering the new stress

field as resulting from perturbations to the stresses of the undamaged laminate we can express the stresses

in the cracked laminate as
rCðaÞ
xx ðX ; ZÞ ¼ rðaÞ0

xx ðZÞ þ rðaÞ
xx ðX ; ZÞ ð2:7Þ
where rðaÞ
xx ðX ; ZÞ are the perturbation stress in the layer a.

The perturbation stresses are introduced in terms of unknown functions with the following simplifying

assumptions

i(i) The modified in-plane tensile stresses rcðaÞ
xx ðX ; ZÞ are linear in Z and depend on unknown functions of X .

(ii) Only the cracked layer (a) and the neighboring layer (b) are affected by the perturbation stresses.

With the above assumptions the perturbation to the in-plane normal stress in the cracked layer can be

written as
rðaÞ
xx ðX ;ZÞ ¼ �Z e/ðX Þ þ ewðX Þ ð2:8aÞ
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and similarly for the layer (b)
rðbÞ
xx ðX ; ZÞ ¼ �Z~vðX Þ þ ~gðX Þ ð2:8bÞ
where e/ðX Þ, ewðX Þ, ~vðX Þ and ~gðX Þ are unknown functions to be determined. The functions ewðX Þ and ~gðX Þ
that are constants in Z are introduced to take into account the effect of the loss of symmetry of the laminate

geometry about the mid-plane. The stress in the layer (c) is taken as unaltered by the presence of the crack

following the approximating assumption (ii) mentioned above. From (2.4), (2.7) and (2.8) the total in-plane
normal stress in each layer is given by
rCðaÞ
xx ðX ; ZÞ ¼ S1Z � Ze/ðX Þ þ ewðX Þ t < Z < H ð2:9aÞ

rCðbÞ
xx ðX ; ZÞ ¼ S2Z � Z~vðX Þ þ ~gðX Þ � t < Z < t ð2:9bÞ

rCðcÞ
xx ðX ; ZÞ ¼ S1Z � H < Z < �t ð2:9cÞ
The following non-dimensional variables are introduced
z ¼ Z
t

x ¼ X
t

h ¼ H
t

/ðxÞ ¼ te/ðX Þ
r0

wðxÞ ¼
ewðX Þ
r0

vðxÞ ¼ t~vðX Þ
r0

gðxÞ ¼ ~gðX Þ
r0

ð2:10Þ
where r0 ¼ r0ðaÞ
xx ðtÞ ¼ S1t is the stress in the 90� layer at the 0/90 interface in the undamaged laminate.

Using (2.10) we rewrite (2.8) with the non-dimensional variables as
rðaÞ
xx ðx; zÞ ¼ r0ð�z/ðxÞ þ wðxÞÞ 1 < z < h ð2:11aÞ

rðbÞ
xx ðx; zÞ ¼ r0ð�zvðxÞ þ gðxÞÞ � 1 < z < 1 ð2:11bÞ
The total laminate stresses are given as
rCðaÞ
xx ðx; zÞ ¼ r0zþ r0ð�z/ðxÞ þ wðxÞÞ 1 < z < h ð2:12aÞ

rCðbÞ
xx ðx; zÞ ¼ S2

S1
r0zþ r0ð�zvðxÞ þ gðxÞÞ � 1 < z < 1 ð2:12bÞ

rCðcÞ
xx ðx; zÞ ¼ r0z � h < z < �1 ð2:12cÞ
Considering that the global load on the cracked laminate is the same as that before the cracks formed, the

moment and force resultants computed with the new stress field should remain the same. Thus the following

two conditions must be satisfied by the stresses. They are given as
Z H

�H
rCðaÞ
xx Z dZ ¼

Z H

�H
r0ðaÞ
xx Z dZ ¼ M ¼ 2

3
ðS2t3 þ S1H 3 � S1t3Þ ð2:13Þ
and
 Z H

rCðaÞ
xx dZ ¼

Z H

r0ðaÞ
xx dZ ¼ 0 ð2:14Þ
�H �H
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Two of the unknown perturbation functions can be eliminated by the application of the above conditions

(2.13) and (2.14). Thus vðxÞ and gðxÞ can be expressed in terms of uðxÞ and wðxÞ as follows:
vðxÞ ¼ A//ðxÞ þ AwwðxÞ ð2:15aÞ

gðxÞ ¼ B//ðxÞ þ BwwðxÞ ð2:15bÞ
where
A/ ¼ �1
2
ðh3 � 1Þ ð2:16aÞ

Aw ¼ 3
4
ðh2 � 1Þ ð2:16bÞ

B/ ¼ 1
4
ðh2 � 1Þ ð2:16cÞ
and
Bw ¼ �1
2
ðh� 1Þ ð2:16dÞ
The stresses must satisfy the following equilibrium equations:
orCðaÞ
xx

oX
þ orðaÞ

xz

oZ
¼ 0 ð2:17aÞ

orCðaÞ
xz

oX
þ orðaÞ

zz

oZ
¼ 0 ð2:17bÞ
Introducing (2.12) into (2.17) and integrating gives the following expressions for the shear and normal

stresses:
rðaÞ
xz ¼ r0

1

2
z2/0ðxÞ

�
� zw0ðxÞ

�
þ faðxÞ ð2:18aÞ

rðbÞ
xz ¼ r0

1

2
z2v0ðxÞ

�
� zg0ðxÞ

�
þ fbðxÞ ð2:18bÞ

rðcÞ
xz ¼ 0 ð2:18cÞ

rðaÞ
zz ¼ r0

�
� z3

6
/00ðxÞ þ z2

2
w00ðxÞ

�
� zf 0

aðxÞ þ gaðxÞ ð2:19aÞ

rðbÞ
zz ¼ r0

�
� z3

6
v00ðxÞ þ z2

2
g00ðxÞ

�
� zf 0

bðxÞ þ gbðxÞ ð2:19bÞ
and
rðcÞ
zz ¼ 0 ð2:19cÞ
The functions faðxÞ, fbðxÞ, gaðxÞ and gbðxÞ in (2.18) and (2.19) are to be determined using the following

traction boundary and interface conditions:
rðaÞ
xz ðx; hÞ ¼ 0 ð2:20aÞ

rðbÞ
xz ðx; 1Þ ¼ rðaÞ

xz ðx; 1Þ ð2:20bÞ
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rðbÞ
xz ðx;�1Þ ¼ 0 ð2:20cÞ

rðaÞ
zz ðx; hÞ ¼ 0 ð2:20dÞ

rðbÞ
zz ðx; 1Þ ¼ rðaÞ

zz ðx; 1Þ ð2:20eÞ
and
rðbÞ
zz ðx;�1Þ ¼ 0 ð2:20fÞ
Eqs. (2.20) give six conditions to be satisfied but only four unknown functions are introduced by the
integration. It can be shown that satisfying the equilibrium equations (2.17) along with the moment and

force balance equations (2.13) and (2.14) ensures that imposing four of the above conditions identically

satisfies the remaining two. Solving for the functions, the shear and normal stresses finally take the fol-

lowing form:
rðaÞ
xz ¼ r0

�
� 1

2
ðh2 � z2Þ/0 þ ðh� zÞw0

�
ð2:21aÞ

rðbÞ
xz ¼ r0

1

2
ðz2

�
� 1Þv0 � ðz� 1Þg0 � 1

2
ðh2 � 1Þ/0 þ ðh� 1Þw0

�
ð2:21bÞ

rðcÞ
xz ¼ 0 ð2:21cÞ

rðaÞ
zz ¼ r0

��
� z3

6
þ h2

2
z� h3

3

�
/00ðxÞ þ 1

2
ðz� hÞ2w00ðxÞ

�
ð2:22aÞ

rðbÞ
zz ¼ r0

��
� z3

6
þ 1

2
z� 1

3

�
v00ðxÞ þ 1

2
ðz� 1Þ2g00ðxÞ þ

�
� 1

3
ðh3 � 1Þ þ 1

2
ðh2 � 1Þ

�
/00

þ 1

2
ðh2

�
� 1Þ � ðh� 1Þz

�
w00ðxÞ

�
ð2:22bÞ

rðcÞ
zz ¼ 0 ð2:22cÞ
Note that /ðxÞ and wðxÞ are the only unknowns in the stress state given by Eqs. (2.12), (2.21) and (2.22).

This stress state satisfies the equilibrium equations and the traction boundary and interface conditions and

therefore is an admissible stress state for applying the principle of minimum complementary energy. Hashin
(1985) has shown that the complementary energy of the cracked laminate can be written in the form
eUc ¼ U 0
c þ U 0

c ð2:23Þ
where U 0
c is the complementary energy of the laminate without cracks and
U 0
c ¼

Z
V
Sijklr0

ijr
0
kl dV ð2:24Þ
Here r0
ij are the perturbation stresses, Sijkl is the compliance tensor and V is the laminate volume. Since U 0

c is
a known constant, minimizing U 0

c with respect to /ðxÞ and wðxÞ would give the required Euler–Lagrange

equations to solve for the stress field.
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The stress energy density for layer k of the laminate due to the perturbation stresses is given by
W ðkÞ ¼ 1

2

rðkÞ2
xx

Exx

 
� 2mxzrðkÞ

xx r
ðkÞ
zz

Exx
þ rðkÞ2

zz

Ezz
þ rðkÞ2

xz

Gxz

!
ð2:25Þ
Noting that the layers (a) and (b) have fibers running in y-direction and x-direction, respectively, the
complementary energy densities of the layers are obtained as
W ðaÞ ¼ 1

2

rðaÞ2
xx

ET

 
� 2mTrðaÞ

xx r
ðaÞ
zz

ET

þ rðaÞ2
zz

ET

þ rðaÞ2
xz

GT

!
ð2:26aÞ

W ðbÞ ¼ 1

2

rðbÞ2
xx

EA

 
� 2mArðbÞ

xx r
ðbÞ
zz

EA

þ rðbÞ2
zz

ET

þ rðbÞ2
xz

GA

!
ð2:26bÞ
The total complementary energy per unit width of the laminate is given by
U 0
c ¼ t2

Z q

�q

Z h

1

W ðaÞ dxdz
�

þ
Z q

�q

Z 1

�1

W ðbÞ dxdz
�

ð2:27Þ
where q ¼ a=t is the non-dimensionalized crack spacing.

Substituting the expressions for the stresses from (2.12), (2.21) and (2.22) in (2.26) and performing the
integration given by (2.27) over the thickness direction gives the complementary energy as a functional in

/ðxÞ and wðxÞ. The expression for the complementary energy is thus obtained in the following form:
U 0
c ¼

Z x¼q

x¼�q
t2 P00/ðxÞ2
h

þ P02/ðxÞ/00ðxÞ þ P22/
00ðxÞ2 þ P11/

0ðxÞ2 þ R00wðxÞ2 þ R02wðxÞwðxÞ þ R22wðxÞ2

þ R11wðxÞ2 þ T00/ðxÞwðxÞ þ T02wðxÞ/00ðxÞ þ T20/ðxÞw00ðxÞ þ T22/
00ðxÞw00ðxÞ þ T11/

0ðxÞw0ðxÞ
i
dx

ð2:28Þ
The coefficients Pij, Rij and Tij in (2.28) are obtained by performing the z-direction integration in (2.27).

They are functions of the elastic constants and the thickness ratio h. Performing the z-direction integration

manually would be tedious but can be easily done using a symbolic computation software such as Maple

and the coefficients Pij, Rij and Tij can be obtained. Minimizing (2.28) with respect to /ðxÞ and wðxÞ gives
the following set of simultaneous ordinary differential equations
p4
d4/
dx4

þ s4
d4w
dx4

þ p2
d2/
dx2

þ s2
d2w
dx2

þ p0/þ s0w ¼ 0 ð2:29aÞ

q4
d4w
dx4

þ s4
d4/
dx4

þ q2
d2w
dx2

þ s2
d2/
dx2

þ q0wþ s0/ ¼ 0 ð2:29bÞ
where
p4 ¼ P22 p2 ¼ P02 � P11 p0 ¼ P00

q4 ¼ R22 q2 ¼ R02 � R11 q0 ¼ R00

s4 ¼
T22
2

s2 ¼
ðT02 þ T20 � T11Þ

2
s0 ¼

T00
2

The above set of equations requires eight boundary conditions, four each on /ðxÞ and wðxÞ. The traction
free condition on the crack plane gives the following conditions:
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rðaÞL
xx ð�a; zÞ ¼ 0 ð2:30aÞ

rðaÞ
xz ð�a; zÞ ¼ 0 ð2:30bÞ
In terms of /ðxÞ and wðxÞ the conditions are
/ð�aÞ ¼ 1 ð2:31aÞ

/0ð�aÞ ¼ 0 ð2:31bÞ

wð�aÞ ¼ 0 ð2:31cÞ

w0ð�aÞ ¼ 0 ð2:31dÞ

The solution to (2.29) is given by
/ðxÞ ¼ Cie
rix ð2:32aÞ

wðxÞ ¼ Die
rix ð2:32bÞ
where ri are the eight solutions to the characteristic equation
ðp4q4 � s24Þr8 þ ðp4q2 þ p2q4 � 2s4s2Þr6 þ ðp4q0 þ p0q4 þ p2q2 � 2s4s0 � s22Þr4 þ ðp2q0 þ p0q2 � 2s2s0Þr2

þ ðp0q0 � s20Þ ¼ 0 ð2:33Þ
Ci are the corresponding integration constants and Di are given in terms of Ci as follows:
Di ¼ � s4r4i þ s2r2i þ s0
p4r4i þ p2r2i þ p0

Ci
Eq. (2.33) gives solutions for ri in the form �ðai � biÞ. The eight constants Ci are obtained by applying the

boundary conditions (2.31).
2.2. Case II: [0m/90n]s

Using the approach described above, an approximate solution to the stress state in the [0m/90n]s laminate

with transverse cracks in the 90� layers on the tension side was also obtained. The following assumption

regarding the width of the crack is made for this case. The crack is considered to extend in the range

0 < Z < t along the thickness of the laminate (Fig. 2). This may not be true in a real case. Under monotonic

loading, the in-plane tensile stress being small near the neutral axis the crack may extend from the top 0/90
interface to some point above the neutral axis. Another case is that of the crack extending through the

thickness of the 90� layer. This can occur under in-plane tensile loading or under cyclic bending. In this

case, under a bending moment the crack will be open from the top 0/90 interface to a point below the

neutral axis. However, the inaccuracy due to the above assumption is expected to be small, since the in-

plane tensile stress is small near the neutral axis compared to locations away from the neutral axis. The

perturbations to the in-plane tensile stresses are therefore taken as
rðaÞ
xx ðX ; ZÞ ¼ �Z~gðX Þ t < Z < H ð2:34aÞ

rðbÞ
xx ðX ; ZÞ ¼ �Ze/ðX Þ 0 < Z < t ð2:34bÞ

rðcÞ
xx ðX ; ZÞ ¼ �Z~vðX Þ � t < Z < 0 ð2:34cÞ



Fig. 2. Unit cell for a [0m/90n]s laminate with matrix cracks.
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Superscripts (a), (b), (c) and (d) are used to indicate the stresses in the corresponding layer (see Fig. 2; layer

(b) is the layer with cracks).

Following the procedure described for the case of [90m/0n]s laminates two of the unknown functions ~gðX Þ
and ~vðxÞ can be eliminated and a closed form solution to e/ðxÞ can be obtained.

Example cases for a [90/0]s and a [0/90]s glass/epoxy laminates are solved and comparisons with finite

element computations are presented in Section 4.
3. Finite element modeling

The analytical models were validated by comparing with finite element computations on unit cells for a

glass/epoxy and a graphite/epoxy laminate. The lamina properties used are given below.

Ply thickness, t ¼ 0:2 mm.
Glass Epoxy : EA ¼ 50:0 GPa ET ¼ 15:20 GPa mA ¼ 0:254 mT ¼ 0:428 GA ¼ 4:70 GPa

GT ¼ 3:28 GPa

Graphite Epoxy : EA ¼ 130:0 GPa ET ¼ 9:70 GPa mA ¼ 0:300 mT ¼ 0:500 GA ¼ 5:00 GPa

GT ¼ 3:60 GPa
where subscripts �A� and �T� stand for axial and transverse directions, respectively.

The finite element computations were done using ABAQUS. A two-dimensional unit cell for a laminate

with crack spacing equal to the thickness of the laminate (4t) was modeled using rectangular plane stress
elements. The meshes used for [90/0]s and [0/90]s are shown in Figs. 3 and 4, respectively. The [90/0]s
laminate mesh has 288 elements and 384 elements were used for [0/90]s. In the case of [0/90]s laminate the

crack was assumed to extend through the thickness of the 90� layer and contact elements were used at the

crack face to simulate the closing of the crack on the compression side.

The traction distribution on the boundary of the unit cell corresponding to the applied bending moment

is not known apriori. Therefore the analysis was done by an iterative approach to arrive at the correct

boundary conditions along with the stress state. The iterative scheme used is described below.

The linear stress distribution in the cross-section of the undamaged laminate corresponding to a bending
moment is known from classical laminate theory. This stress distribution is applied as the traction con-

ditions on face B of the unit cell of the cracked laminate (Figs. 3 and 4). The unit cell being a repetitive
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element symmetry conditions are applied on face A. The finite element computation is performed and the
traction distribution on the face A is obtained. This traction is applied on the face B and the finite element

computation is repeated. The analysis is repeated this way until the difference between the tractions from

two successive iterations becomes negligible. The stress field finally obtained is symmetrical and corre-

sponds to the global moment applied on the laminate. In carrying out this procedure starting with the

undamaged laminate stresses as the boundary condition the tractions at the symmetric face converged

in three to four iterations.
4. Results and discussion

Comparisons of the stresses with the finite element (FE) results are shown in Figs. 5–12. The stress values

are non-dimensionalized with respect to the axial stress in the 90� layer in the undamaged laminate at Z ¼ t
(denoted by r0). Figs. 5 and 6 show the distribution of the inplane normal stress rxx across the thickness at

X ¼ 0, i.e., mid-way between two consecutive cracks, in glass/epoxy laminates of [90/0]s and [0/90]s layups,
respectively. Stresses in this section are of interest because a new crack is likely to form along this section in
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the 90� layers (top layer in [90/0]s and the layer above the mid-plane in [0/90]s). It can be seen that the

predicted stresses and FE results match very well in these regions of the section. Fig. 7 shows the axial

distribution of the three stress components in the cracked layer of [90/0]s glass/epoxy laminate at Z ¼ 1:5t,
i.e., mid-way through the thickness. Similar results for [90/0]s graphite/epoxy laminate are shown in Fig. 8.

Figs. 9 and 10 show similar plots for the [0/90]s laminate at Z ¼ 0:5t, i.e., mid-way through the thickness of

the cracked 90� layer. Note that the stresses show good agreement for both laminates away from the crack

planes.
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We shall now examine the stresses close to the 0/90 interface where interface cracks are likely to form.

Figs. 11 and 12 show the axial distributions of stresses for graphite epoxy laminates at Z ¼ 1:1t for [90/0]s
and at Z ¼ 0:9t for [0/90]s. Similar results were obtained for glass/epoxy laminates. An interesting result is

obtained. The transverse normal stress rzz is tensile close to the 0/90 interface in the vicinity of the crack tip
for the [90/0]s laminate, while it is compressive for the [0/90]s laminate. Thus delamination is likely in the

[90/0]s laminate.
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Fig. 9. [0/90]s laminate (glass/epoxy): axial distribution of stresses in the cracked layer at Z ¼ 0:5t.
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Fig. 10. [0/90]s laminate (graphite/epoxy): axial distribution of stresses in the cracked layer at Z ¼ 0:5t.
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The finite element results give high stress concentrations close to the crack tips, and these stresses would

increase with mesh refinement as a consequence of the presence of stress singularity. The approximate stress

field assumed in the variational approach does not take the crack tip stress singularity into account.

However, the singularity is considered to be of no consequence for the evolution of transverse ply cracking,
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Fig. 11. [90/0]s laminate (graphite/epoxy): axial distribution of stresses in the cracked layer at Z ¼ 1:1t.
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Fig. 12. [0/90]s laminate (graphite/epoxy): axial distribution of stresses in the cracked layer at Z ¼ 0:9t.
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which normally occurs by the formation of new cracks at locations away from already existing cracks.

Furthermore, the material heterogeneity at the fiber scale would tend to lower the stress gradients, as ar-

gued by Hashin (1985) in assuming a constant through-thickness axial stress. Thus, for the purpose of

predicting matrix crack multiplication the results from this analysis are expected to be of sufficient accu-
racy. The model results for the axial normal stress compare generally well with the FE results in the region

of interest for glass–epoxy laminates and for graphite–epoxy laminates. However, in one case of graphite–

epoxy [90/0]s laminate, at Z ¼ 1:5t, a large discrepancy exists (Fig. 8). It is noted that crack formation is
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expected at the interface, Z ¼ t, close to which the agreement between the model and numerical results

is acceptable (Fig. 11).
5. Conclusion

Approximate analytical solutions for stress states in [90/0]s and [90/0]s laminates under bending with

transverse ply cracks in the 90� layers are obtained using the variational approach. Finite element simu-

lations were done for the case of crack spacing equal to twice the thickness of the 90� layer, and these agreed

well with the analytical predictions in the regions where the next set of cracks is likely to form. The model

can be expected to give even better accuracy for larger crack spacing, but the accuracy for smaller crack

spacing may need further study. For the case of uniform tension on cross-ply laminates, the saturation
crack spacing has been found to be of the order of the thickness of the 90� layer (Garrett and Bailey, 1977).

However, for bending, other modes of damage such as delamination near the transverse crack tips or

fracture of 0� layer are likely before matrix crack saturation occurs. Thus very low crack spacing may not

be reached in reality.

The stress results for the two cases show that the transverse normal stress can be tensile or compressive,

depending on the laminate lay-up and location of the cracked layer. Thus a study of the evolution of

cracking must also consider the possibility of internal delamination in assessing further matrix cracking.

The assumption that the stresses in the layers farther from the cracked layer are unaffected by the
cracking introduces some error in the calculated stresses in those layers. On the other hand, the assumption

simplifies the analysis and gives the possibility of extending the approach to more general ply lay-ups.

Further work is underway in this direction and for studying the evolution of matrix cracking and

delamination.
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