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Abstract

Approximate analytical solutions based on a variational approach are presented for stresses in two cross-ply lam-
inates, [90,,/0,]s and [0,,/90,]s, with matrix cracks in the 90° layers, subjected to bending. The analysis assumes a plane
stress state in longitudinal sections of the laminate and accounts for the lack of symmetry caused by partially closed
crack planes or by cracks present on one side of the laminate mid-plane. Comparisons with finite element analysis for
laminates of glass/epoxy and graphite/epoxy show that the stress components in the cracked layers in the regions of
interest are in good agreement with analytical results. The model is therefore suitable for predicting matrix crack
multiplication in addition to estimating the residual flexural stiffness. The results obtained show that the transverse
normal stress at the 0/90 interface is compressive for [0/90]; laminate, while this stress is tensile in regions of the interface
closer to the crack for the [90/0]; laminate. Thus the analysis suggests that delamination is possible under bending in the
[90/0]s laminate.
© 2003 Published by Elsevier Ltd.

1. Introduction

Composite laminates in structural applications are generally subjected to combinations of in-plane loads
as well as bending and torsional moments. However, most studies in the past have focused on the laminate
response under in-plane loads only, primarily under uniaxial loading parallel to a symmetry direction.
Experimental observations of damage in symmetric laminates under tension parallel to a symmetry (axial)
direction have shown that the damage occurs first in the form of transverse ply cracks, i.e. matrix cracks
that run parallel to the fiber direction in off-axis plies. Subsequently, delamination occurs, more commonly
under cyclic loading, in interfacial regions surrounding intersections of ply cracks in two neighboring plies.
These damage modes and the associated laminate response have been studied extensively and reported
widely in the literature (e.g., Reifsnider, 1977; Parvizi et al., 1978; Flaggs and Kural, 1982; Talreja, 1985a;
Hashin, 1985; Wang et al., 1985; Laws and Dvorak, 1988; Whitcomb, 1992; Nairn and Hu, 1994). Among
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the approaches taken to analyze and model damage are the approximate one-dimensional shear-lag
analysis (e.g., Highsmith and Reifsnider, 1982), variational and other solutions to local stresses (e.g.,
Hashin, 1985; Nairn, 1995; McCartney, 1996a,b) and continuum damage mechanics based approaches
(e.g., Talreja, 1985b; Allen et al., 1987; Maire and Chaboche, 1997). The reader is referred to a recent
publication for a detailed review of the developments in this area (Nairn, 2000).

The work to treat laminates undergoing damage in bending has begun only in recent years. Experimental
investigations in this area have been reported by Echaabi et al. (1996) and Adolfsson and Gudmundson
(1999). Smith and Ogin (1999) have obtained estimates of the reduced flexural modulus as a function of
crack density based on the shear-lag approach. Li et al. (1994) have developed a semi-numerical approach
to solve for the stresses in the cracked laminate under bending. Their approach is similar to the dis-
placement based finite element method with discretization only in the thickness direction. The field vari-
ables are approximated by Fourier series expansions in the in-plane directions, thus allowing the stresses
and effective properties for different crack spacings to be calculated by discretizing the domain only once.

Among more advanced analytical work on bending in laminates with transverse cracks is the method
developed by McCartney and Pierse (1997) that provides approximate solutions to the stress state. In his
approach the laminate is subdivided into several layers in the thickness direction and the 2-D elasticity
equations for each layer with appropriate interface and boundary conditions are considered. Solution to the
stress state is obtained by introducing approximating assumptions in the constitutive relations as well as
in the boundary conditions. The accuracy of the results can be improved by increasing the number of
layer subdivisions.

Another approach is that of Adolfsson and Gudmundson (1997) who developed a method to predict the
reduced thermoelastic properties. This approach derives the work done by transverse cracking in a laminate
by using the stress intensity factor for an array of parallel cracks in an infinite transversely isotropic
medium. Although simple and generally applicable to symmetric laminates, as well as to cracking in
multiple layers, there is uncertainty concerning the accuracy of this approach. The errors introduced by the
assumption of a homogeneous infinite medium would presumably depend on how different the axial ply
properties of the cracked ply are from those of the neighboring plies, as well as on the fact that the laminate
thickness is finite and often only a few times as large as the crack length.

The objective of the work presented here is to analyze stresses in cross-ply laminates in which transverse
ply cracks form under application of a bending moment. The cases considered are [90,,/0,]s; and [0,,/90,];
laminates with cracks in the 90° layers. In both cases a variational approach used earlier for axial loading of
cross-ply laminates (Hashin, 1985) is used. Kim and Nairn (2000) have used a similar approach to study the
crack formation in the coating in coating/substrate systems under bending loads. The stresses determined
by this approach are verified by a finite element analysis. Finally, based on these stresses an assessment is
made of further transverse cracking under increasing bending moment as well as of formation of delami-
nation.

2. Stress analysis

We assume that transverse cracks have been formed in a given cross-ply laminate under axial tension or
under monotonic or reversed bending. Following this, we investigate the stress state generated within the
laminate under application of a fixed bending moment. We assume that under this moment the cracks
remain open only on the tension side of the laminate mid-plane. Thus any cracks lying on the compression
side that were formed under axial tension or under reversed bending are assumed to close and transmit
compressive stresses across their planes. We note that the laminate symmetry about the mid-plane in the
undamaged state is lost in the damaged state under the applied bending moment. The following analysis
will account for this loss of symmetry.



S. Kuriakose, R. Talreja | International Journal of Solids and Structures 41 (2004) 2331-2347 2333

We assume that the stresses in the cracked laminate can be obtained by modifying the stress state of the
undamaged laminate with unknown perturbation functions. Approximations are introduced in these
functions to simplify the analysis. An admissible stress state for applying the principle of minimum com-
plementary potential energy is obtained from the assumed stress state by satisfying the 2-D equilibrium
equations and the boundary and interface conditions. Minimizing the complementary energy functional
with respect to the unknown functions gives the Euler-Lagrange equations to be solved along with
appropriate boundary conditions at the crack faces. Further analysis for the two cases of cross-ply lami-
nates follows.

2.1. Case I: [90,10,]

The laminate with matrix cracks for this case is shown in Fig. 1a. The cracks are considered to extend
over the width of the laminate and the crack spacing is assumed to be uniform. We consider the region
between two consecutive cracks with spacing equal to a, as shown in Fig. 1b. Plane stress condition in
the X—Z plane is assumed and thereby stresses in the Y-direction due to Poisson’s effect are ignored.

First we consider the undamaged laminate subjected to a constant bending moment M. Classical lami-
nation theory is used to obtain the stress state in the laminate and the strain ¢ in the laminate is given by

e=D"'MZ (2.1)
where D is the flexural stiffness matrix of the laminate, M is the vector of moment resultants and Z is the
distance of the considered point from mid-plane. Thus

M
M=10 (22)
0

Fig. 1. (a) [90,,/0,]s laminate with matrix cracks in 90° layer on the tension side and (b) Unit cell for stress analysis.
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The stresses in the 90° and 0° layers are given by

" = Q"¢ (2.3)

where Q” is the reduced stiffness matrix for layer « which represents layer a, b, or ¢, as shown in Fig. 1b.
The superscript 0 is used to indicate the stress for the undamaged laminate, which can be written as

a9 (2) =87 (2.4a)
a"(2) = 8,7 (2.4b)
a?9(2) =82 (2.4¢c)
oW(Z) = 0a"(Z) = 6%(Z) = 0 (2.4d)
0%(Z) = a"(Z) = 62)(Z) = 0 (2.4¢)
where
M3
S = 21: o'y (M (2.5a)
L /=
and
< 0)
S, = Z 0,/ D! (2.5b)

Here O © and Q<90 are the reduced stiffness matrices of the 0° layer and the 90° layer, respectively. Inte-
grating the moment due to the stresses given by (2.4) across the thickness the total bending moment M is
obtained as

=4Sr + SiH? — §,F) (2.6)

where H and ¢ are the thickness values as shown in Fig. 1b.
Now we consider the laminate with matrix cracks. The presence of cracks alters the stress field. Let
C4) (X, Z) be the total in-plane normal stress in layer « of the cracked laminate. Considering the new stress
ﬁeld as resulting from perturbations to the stresses of the undamaged laminate we can express the stresses
in the cracked laminate as

0 (X,2) = 0i(2) + o) (X, 2) (2.7)

where ¢% (X, Z) are the perturbation stress in the layer o.
The perturbatlon stresses are introduced in terms of unknown functions with the following simplifying
assumptions

(i) The modified in-plane tensile stresses 0¥ (X, Z) are linear in Z and depend on unknown functions of X.
(i1) Only the cracked layer (a) and the nelghborlng layer (b) are affected by the perturbation stresses.

With the above assumptions the perturbation to the in-plane normal stress in the cracked layer can be
written as

o (X,Z) = —Z$(X) + ¥ (X) (2.82)
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and similarly for the layer ()
o¥)(X,Z) = —Z7(X) + ii(X) (2.8b)

where %(X ), lZ(X ), 7(X) and #(X) are unknown functions to be determined. The functions J(X ) and 7(X)
that are constants in Z are introduced to take into account the effect of the loss of symmetry of the laminate
geometry about the mid-plane. The stress in the layer (c) is taken as unaltered by the presence of the crack
following the approximating assumption (ii) mentioned above. From (2.4), (2.7) and (2.8) the total in-plane
normal stress in each layer is given by

COX,Z)=8SZ-Z$(X)+ Yy (X) t<Z<H (2.92)
o (X,Z) =7 - Z3(X) +7(X) —1<Z<1i (2.9b)
oYX, Z2) =82 -H<Z< -t (2.9¢)
The following non-dimensional variables are introduced
z= g X = )—( h= E
t t t
to(X X
bx) = ¢ (X) w(x):lﬁ( ) (2.10)
oo ao
(X nx
J(x) = 1(X) (x):n( )
oo oo

where 6y = ¢%(f) = Syt is the stress in the 90° layer at the 0/90 interface in the undamaged laminate.

XX

Using (2.10) we rewrite (2.8) with the non-dimensional variables as
9 (x,z) = op(—zp(x) + Y(x)) 1<z<h (2.11a)
aii)(x,z) =oo(—zx(x) +nx) -1<z<1 (2.11b)
The total laminate stresses are given as

@ (x,z) = 0oz + 0o (—zdp(x) + Y (x)) 1<z<h (2.12a)

C(b) S
o.M (x,z) = 5 o0 +oo(—zy(x) +nx) —-1<z<1 (2.12b)

1
c$(x,z) = a9z —h<z< -1 (2.12¢)

Considering that the global load on the cracked laminate is the same as that before the cracks formed, the
moment and force resultants computed with the new stress field should remain the same. Thus the following
two conditions must be satisfied by the stresses. They are given as

H H
2
/ c€"zdz = / " WzdZ =M = g(Szt3 + 8 H? — 8,7) (2.13)

H -H

and

H H
/ ¥ dz = / a"“dzZ =0 (2.14)
—H —H
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Two of the unknown perturbation functions can be eliminated by the application of the above conditions
(2.13) and (2.14). Thus y(x) and 5(x) can be expressed in terms of ¢(x) and ¥(x) as follows:

1(x) = Agdp(x) + Ay (x) (2.15a)

n(x) = Byd(x) + By (x) (2.15b)
where

Ay = —%(h3 -1 (2.16a)

Ay = %(h2 -1 (2.16b)

By =i(h* = 1) (2.16¢)
and

B, = —%(h -1 (2.16d)

The stresses must satisfy the following equilibrium equations:

0cC® g
aﬁ‘( a; =0 (2.17a)

06 9o
oxX oz

Introducing (2.12) into (2.17) and integrating gives the following expressions for the shear and normal
stresses:

0 (2.17b)

o = oo 5200 - /()| + 40 .18

ol = ay Bzzx’(x) - zn’(x)] + fi(x) (2.18b)

a9 =0 (2.18¢)
Z3 22

o = on| ~ 20 + 500 2110 + o) (2.192)
Z3 22

o) =gy { —S ) +3 n”(x)} — 2f(x) + gs(x) (2.19b)

and
o) =0 (2.19¢)

The functions f,(x), f»(x), g.(x) and g,(x) in (2.18) and (2.19) are to be determined using the following
traction boundary and interface conditions:

o (x,h) =0 (2.20a)

o¥(x,1) =0\ (x,1) (2.20b)
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o (x,~1) =0 (2.20¢)

ol (x,h) =0 (2.20d)

o (x,1) = al¥(x,1) (2.20¢)
and

ol (x,~1) =0 (2.20f)

Egs. (2.20) give six conditions to be satisfied but only four unknown functions are introduced by the
integration. It can be shown that satisfying the equilibrium equations (2.17) along with the moment and
force balance equations (2.13) and (2.14) ensures that imposing four of the above conditions identically
satisfies the remaining two. Solving for the functions, the shear and normal stresses finally take the fol-
lowing form:

o =] = 5 =)+ (b= 2 (221a)

) =g B(f Dy — (== —%(k2 —1)¢' + (h— 1)14 (2.21b)

o) =0 (2.21¢)
Z3 2 3

¥ = a, [( < + %Z - %) ¢"(x) + % (z— h)zl//"(x)} (2.22a)

o eaf(2 b Y e (w0
# (300 =1 - 6= 12w o] (2.220)

a9 =0 (2.22¢)

Note that ¢(x) and ¥(x) are the only unknowns in the stress state given by Egs. (2.12), (2.21) and (2.22).
This stress state satisfies the equilibrium equations and the traction boundary and interface conditions and
therefore is an admissible stress state for applying the principle of minimum complementary energy. Hashin
(1985) has shown that the complementary energy of the cracked laminate can be written in the form

U.=U"+ U (2.23)
where U? is the complementary energy of the laminate without cracks and
U, = /S,: 107,07, AV (2.24)
14
Here a;/. are the perturbation stresses, S;;, is the compliance tensor and ¥ is the laminate volume. Since U? is

a known constant, minimizing U] with respect to ¢(x) and ¥/(x) would give the required Euler-Lagrange
equations to solve for the stress field.
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The stress energy density for layer k& of the laminate due to the perturbation stresses is given by

(k)? (k) (k) (k)? (k)?
o Lo 2veonior  on | oy (2.25)
2 Exx Exx Ezz ze

Noting that the layers (a¢) and (b) have fibers running in y-direction and x-direction, respectively, the
complementary energy densities of the layers are obtained as

1/ 6@ 2pgdga g g
wa — - <O-EL M0 Oz | Tz | O (2.26a)
T

2 ET ET GT

W(b) — | =X xz
2 EA EA ET + GA

1/ c® 2vig®a® & 07
<O-xx _ vAO—xx O-zz +azz g (226b)

The total complementary energy per unit width of the laminate is given by

P h p 1
Uc’tz{ / / W@ dxdz + / / W(b)dxdz} (2.27)
—p J1 —p J—1

where p = a/t is the non-dimensionalized crack spacing.

Substituting the expressions for the stresses from (2.12), (2.21) and (2.22) in (2.26) and performing the
integration given by (2.27) over the thickness direction gives the complementary energy as a functional in
¢(x) and Y(x). The expression for the complementary energy is thus obtained in the following form:

Ui = / G [Prod(x)* + Prap(x)¢(x) + Pag ()" + P () + Rooth ()" + Roa (¥) (x) + Roap (x)”

==p

+ R () + Toodp () (x) + Toath (x) " (x) + Toop ()" (x) + Ty ()" (x) + T11 ' (x)' (x) | dx
(2.28)

The coefficients P;, R;; and T}; in (2.28) are obtained by performing the z-direction integration in (2.27).
They are functions of the elastic constants and the thickness ratio 4. Performing the z-direction integration
manually would be tedious but can be easily done using a symbolic computation software such as Maple
and the coefficients P,;, R;; and T}; can be obtained. Minimizing (2.28) with respect to ¢(x) and y(x) gives
the following set of simultaneous ordinary differential equations

d*¢  d'y d¢  d*y

P4d—x4+S4W‘f‘P2E+S2@+PO¢+SOW:0 (2.29)
d* d* d’ &’
Q4%+S4£+Q2%+S2£+(Iod/+so¢=0 (2.29b)
where

pa=Py pp=Pp—P1 po=Fy
qgs=Rn g =Rp—Ri qo=Ry

_In ¢ :(T02+T20*T11) . _Tw

2 2 T2
The above set of equations requires eight boundary conditions, four each on ¢(x) and ¥(x). The traction
free condition on the crack plane gives the following conditions:

S4
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c 9 (+a,z) =0 (2.30a)

0 (+a,z) =0 (2.30b)
In terms of ¢(x) and y(x) the conditions are

¢(£a) =1 (2.31a)

Y(ta) =0 (2.31¢)

V' (+a) =0 (2.31d)
The solution to (2.29) is given by

o(x) = Ce™ (2.32a)

Y(x) = Die’™ (2.32b)

where 7; are the eight solutions to the characteristic equation
(Paga — 5)7° + (Paq2 + Paqa — 25452)r° + (Paqo + Poga + p2g2 — 25450 — $3)r* + (p2go + poga — 25250)7°
+ (poqo — s3) =0 (2.33)
C; are the corresponding integration constants and D; are given in terms of C; as follows:

st + 51 + 50

D; = 4 2
pari + pari + po

Eq. (2.33) gives solutions for r; in the form +(o; £ f8;). The eight constants C; are obtained by applying the
boundary conditions (2.31).

2.2. Case II: [0,,/90,]

Using the approach described above, an approximate solution to the stress state in the [0,,/90,]; laminate
with transverse cracks in the 90° layers on the tension side was also obtained. The following assumption
regarding the width of the crack is made for this case. The crack is considered to extend in the range
0 < Z < t along the thickness of the laminate (Fig. 2). This may not be true in a real case. Under monotonic
loading, the in-plane tensile stress being small near the neutral axis the crack may extend from the top 0/90
interface to some point above the neutral axis. Another case is that of the crack extending through the
thickness of the 90° layer. This can occur under in-plane tensile loading or under cyclic bending. In this
case, under a bending moment the crack will be open from the top 0/90 interface to a point below the
neutral axis. However, the inaccuracy due to the above assumption is expected to be small, since the in-
plane tensile stress is small near the neutral axis compared to locations away from the neutral axis. The
perturbations to the in-plane tensile stresses are therefore taken as

c“X,Z2)=-Zi(X) t<Z<H (2.34a)
dV(X,Z)=-Zp(X) 0<Z<t (2.34b)

d9(X,Z)=-Zy(X) —-t<Z<0 (2.34¢)
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Fig. 2. Unit cell for a [0,,/90,]s laminate with matrix cracks.

Superscripts (a), (b), (¢) and (d) are used to indicate the stresses in the corresponding layer (see Fig. 2; layer
(b) is the layer with cracks).
Following the procedure described for the case of [90,,/0,]s laminates two of the unknown functions #7(X)

and ¥(x) can be eliminated and a closed form solution to %(x) can be obtained.
Example cases for a [90/0]; and a [0/90]; glass/epoxy laminates are solved and comparisons with finite
element computations are presented in Section 4.

3. Finite element modeling

The analytical models were validated by comparing with finite element computations on unit cells for a
glass/epoxy and a graphite/epoxy laminate. The lamina properties used are given below.
Ply thickness, t = 0.2 mm.

Glass Epoxy : Eo = 50.0 GPa Er =15.20 GPa vy =0.254 vr =0428 G =4.70 GPa
Gt =3.28 GPa

Graphite Epoxy : Exo = 130.0 GPa Er =9.70 GPa vy =0.300 vy =0.500 Ga = 5.00 GPa
Gt =3.60 GPa

where subscripts ‘A’ and ‘T’ stand for axial and transverse directions, respectively.

The finite element computations were done using ABAQUS. A two-dimensional unit cell for a laminate
with crack spacing equal to the thickness of the laminate (4f) was modeled using rectangular plane stress
elements. The meshes used for [90/0]; and [0/90]; are shown in Figs. 3 and 4, respectively. The [90/0],
laminate mesh has 288 elements and 384 elements were used for [0/90];. In the case of [0/90]; laminate the
crack was assumed to extend through the thickness of the 90° layer and contact elements were used at the
crack face to simulate the closing of the crack on the compression side.

The traction distribution on the boundary of the unit cell corresponding to the applied bending moment
is not known apriori. Therefore the analysis was done by an iterative approach to arrive at the correct
boundary conditions along with the stress state. The iterative scheme used is described below.

The linear stress distribution in the cross-section of the undamaged laminate corresponding to a bending
moment is known from classical laminate theory. This stress distribution is applied as the traction con-
ditions on face B of the unit cell of the cracked laminate (Figs. 3 and 4). The unit cell being a repetitive
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Fig. 3. Finite element model for [90/0]; unit cell.
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Fig. 4. Finite element model for [0/90]; unit cell.

element symmetry conditions are applied on face A. The finite element computation is performed and the
traction distribution on the face A is obtained. This traction is applied on the face B and the finite element
computation is repeated. The analysis is repeated this way until the difference between the tractions from
two successive iterations becomes negligible. The stress field finally obtained is symmetrical and corre-
sponds to the global moment applied on the laminate. In carrying out this procedure starting with the
undamaged laminate stresses as the boundary condition the tractions at the symmetric face converged
in three to four iterations.

4. Results and discussion

Comparisons of the stresses with the finite element (FE) results are shown in Figs. 5-12. The stress values
are non-dimensionalized with respect to the axial stress in the 90° layer in the undamaged laminate at Z = ¢
(denoted by ay). Figs. 5 and 6 show the distribution of the inplane normal stress o,, across the thickness at
X =0, i.e., mid-way between two consecutive cracks, in glass/epoxy laminates of [90/0]; and [0/90], layups,
respectively. Stresses in this section are of interest because a new crack is likely to form along this section in
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2.0 o
Oxx/00

Fig. 5. [90/0]; glass/epoxy laminate: distribution of inplane normal stress across the thickness at X = 0 (mid-way between consecutive
cracks).

2 -l
1 a0
0
N .go0 4.0 0.0 4.0 8.0
A1 o
.-O-- FEM
—M— Variational

Oxx/C0

Fig. 6. [0/90], glass/epoxy laminate: distribution of inplane normal stress across the thickness at X = 0 (mid-way between consecutive
cracks).

the 90° layers (top layer in [90/0]; and the layer above the mid-plane in [0/90];). It can be seen that the
predicted stresses and FE results match very well in these regions of the section. Fig. 7 shows the axial
distribution of the three stress components in the cracked layer of [90/0], glass/epoxy laminate at Z = 1.5¢,
i.e., mid-way through the thickness. Similar results for [90/0], graphite/epoxy laminate are shown in Fig. 8.
Figs. 9 and 10 show similar plots for the [0/90]; laminate at Z = 0.5¢, i.e., mid-way through the thickness of
the cracked 90° layer. Note that the stresses show good agreement for both laminates away from the crack
planes.
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Fig. 7. [90/0]; laminate (glass/epoxy): axial distribution of stresses in the cracked layer at Z = 1.5¢.

Fig. 8. [90/0]; laminate (graphite/epoxy): axial distribution of stresses in the cracked layer at Z = 1.5.

Normalized Stress

Normalized stresses

-0.20+

-0.40

1.00

Normalized distance from crack plane

1.0
-~ FEM Oxx /00 7
—— Variational L g W
- Eg
LEr
f’ ’
0.5 1 .
fE’
e
B.g-Z
@ 9 Gzz/G0
0.0 4 B
N & - —— = b
A . . =
A e
Gxz/G0 A-p-'s
-0.5 T T
0.0 0.5 1.0 1.5 2.0

0.80+

0.60-

0.40+

0.20-

- - FEM
— Variational PR

0.00

0.0

0.5 1.0 15
Normalized distance from crack plane

20

2343

We shall now examine the stresses close to the 0/90 interface where interface cracks are likely to form.
Figs. 11 and 12 show the axial distributions of stresses for graphite epoxy laminates at Z = 1.1¢ for [90/0];
and at Z = 0.9¢ for [0/90],. Similar results were obtained for glass/epoxy laminates. An interesting result is
obtained. The transverse normal stress .. is tensile close to the 0/90 interface in the vicinity of the crack tip
for the [90/0]; laminate, while it is compressive for the [0/90]; laminate. Thus delamination is likely in the

[90/0]; laminate.
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Fig. 9. [0/90]; laminate (glass/epoxy): axial distribution of stresses in the cracked layer at Z = 0.5¢.
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Fig. 10. [0/90]; laminate (graphite/epoxy): axial distribution of stresses in the cracked layer at Z = 0.5¢.

The finite element results give high stress concentrations close to the crack tips, and these stresses would
increase with mesh refinement as a consequence of the presence of stress singularity. The approximate stress
field assumed in the variational approach does not take the crack tip stress singularity into account.
However, the singularity is considered to be of no consequence for the evolution of transverse ply cracking,
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Fig. 11. [90/0]; laminate (graphite/epoxy): axial distribution of stresses in the cracked layer at Z = 1.1z.
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Fig. 12. [0/90]; laminate (graphite/epoxy): axial distribution of stresses in the cracked layer at Z = 0.9z.
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which normally occurs by the formation of new cracks at locations away from already existing cracks.
Furthermore, the material heterogeneity at the fiber scale would tend to lower the stress gradients, as ar-
gued by Hashin (1985) in assuming a constant through-thickness axial stress. Thus, for the purpose of
predicting matrix crack multiplication the results from this analysis are expected to be of sufficient accu-
racy. The model results for the axial normal stress compare generally well with the FE results in the region
of interest for glass—epoxy laminates and for graphite—epoxy laminates. However, in one case of graphite—
epoxy [90/0]; laminate, at Z = 1.5¢, a large discrepancy exists (Fig. 8). It is noted that crack formation is
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expected at the interface, Z = ¢, close to which the agreement between the model and numerical results
is acceptable (Fig. 11).

5. Conclusion

Approximate analytical solutions for stress states in [90/0]; and [90/0]; laminates under bending with
transverse ply cracks in the 90° layers are obtained using the variational approach. Finite element simu-
lations were done for the case of crack spacing equal to twice the thickness of the 90° layer, and these agreed
well with the analytical predictions in the regions where the next set of cracks is likely to form. The model
can be expected to give even better accuracy for larger crack spacing, but the accuracy for smaller crack
spacing may need further study. For the case of uniform tension on cross-ply laminates, the saturation
crack spacing has been found to be of the order of the thickness of the 90° layer (Garrett and Bailey, 1977).
However, for bending, other modes of damage such as delamination near the transverse crack tips or
fracture of 0° layer are likely before matrix crack saturation occurs. Thus very low crack spacing may not
be reached in reality.

The stress results for the two cases show that the transverse normal stress can be tensile or compressive,
depending on the laminate lay-up and location of the cracked layer. Thus a study of the evolution of
cracking must also consider the possibility of internal delamination in assessing further matrix cracking.

The assumption that the stresses in the layers farther from the cracked layer are unaffected by the
cracking introduces some error in the calculated stresses in those layers. On the other hand, the assumption
simplifies the analysis and gives the possibility of extending the approach to more general ply lay-ups.
Further work is underway in this direction and for studying the evolution of matrix cracking and
delamination.
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